Chiral synthons from carvone. Part 31. \dagger Enantiospecific total synthesis of (+)-2-pupukeanone and 5-epi-2-pupukeanone

Adusunilli Srikrishna * and T. Jagadeeswar Reddy
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India

Abstract

The first enantiospecific total synthesis of (+)-2-pupukeanone and 5-epi-2-pupukeanone has been achieved starting from (R)-carvone, employing a radical cyclisation reaction based approach. (R)-Carvone has been transformed into the bicyclo[2.2.2]octenone 12 via kinetic alkylation, bromination of the isopropenyl moiety and intramolecular alkylation, which on further alkylation with prenyl bromide leads to bicyclo[2.2.2]octenone 16. The 5-exo-trig radical cyclisation of the bromohydrin 17, obtained from 16, furnishes an epimeric mixture of the isotwistanes 19 and 20 along with a minor amount of the rearranged product 21. Ozonolytic cleavage of the exomethylene moiety, dehydration of the tertiary alcohol and regioselective Wolff-Kishner reduction transforms the isotwistanes 19 and 20 into the enone 24. Alternatively, kinetic alkylation of the bicyclo[2.2.2]octenone 12 with 1,4-dibromo-2-methylbut-2-ene followed by 5 -exo-trig allyl radical cyclisation of 35 and selective functional group transformations generates the isotwistane 23 and a minor amount of the rearranged product 29. Finally, catalytic hydrogenation transforms the enone 24 into (+)-2-pupukeanone 5 and its C-5 epimer 6.

In a number of marine organisms, chemical defence via secretion of toxic and/or strong smelling organic compounds from their skin glands is a common phenomenon to protect themselves from the higher animals. It was observed ${ }^{1}$ that the nudibranch Phyllidia varicosa Lamarck, 1801 secretes from its skin glands a strong and unusually smelling, heat stable, volatile substance which is lethal to fish and crustaceans to protect the delicate shell-less, brightly coloured opisthobranch mollusc from its predators. Scheuer and co-workers reported ${ }^{2}$ the isolation of this material from Phyllidia varicosa and also from its prey, a sponge Hymeniacidon sp., and found it to be a mixture of two metabolites. The structures of these metabolites, incorporating the novel isotwistane (1) carbon framework, were established as 9 -isocyano- and 2-isocyano-1,3-dimethyl-5-endoisopropyltricyclo[4.3.1.0 ${ }^{3,7}$]decanes ($\mathbf{(}$ and $\mathbf{3}$) via a combination of chemical degradation and single crystal X-ray diffraction studies. The presence of a novel tricyclo[4.3.1.0 ${ }^{3,7}$]decane (isotwistane) carbon framework (1), isocyanide moiety, two

1

$2 X=N C ; Y=H$
$3 X=H ; Y=N C$

$4 X=O ; Y=H_{2}$
$5 \mathrm{X}=\mathrm{H}_{2} ; Y=\mathrm{O} ;(5 S)$
$6 \mathrm{X}=\mathrm{H}_{2} ; \mathrm{Y}=\mathrm{O} ;(5 R)$
quaternary carbons, six chiral centres and the unfavourable endo orientation of the isopropyl group made pupukeananes attractive and challenging synthetic targets. As a consequence, several methods were developed for the synthesis of racemic pupukeanones $(\pm)-2$ and $(\pm)-3$ and the corresponding ketones, 9 - and 2-pupukeanones $(\pm)-4$ and $(\pm)-5 .{ }^{3,4}$ In addition to the two earlier approaches by Corey and Frater, ${ }^{4}$ recently Chang and Chang reported ${ }^{5 a}$ an intramolecular alkylation based approach to (\pm)-2-pupukeanone. At the same time, synthesis of 2-pupukeanone employing an allyl radical cyclisation by Subba

[^0]Rao and Kaliappan, ${ }^{5 b}$ and a formal total synthesis of (\pm)-2pupukeanone based on a vinyl radical cyclisation reaction from our laboratory ${ }^{5 c}$ were reported. Since there is no report on the synthesis of chiral 2-pupukeanone, we have embarked on the enantiospecific total synthesis of chiral 2-pupukeanone and 5 -epi-2-pupukeanones 5 and $\mathbf{6}$ starting from (R)-carvone, and herein we describe the details ${ }^{6}$ of these investigations.
For the synthesis of chiral 2-pupukeanone, as depicted in retrosynthetic Scheme 1, a 5 -exo-trig radical cyclisation reac-

Scheme 1
tion ${ }^{7}$ based approach has been envisaged. It was anticipated that the pupukeanone framework can be assembled via a 5-exotrig cyclisation of the radical 7. An appropriate precursor $\mathbf{8}$ for the generation of the radical 7 can be obtained by kinetic alkylation of the enolate derived from a bicyclo[2.2.2]octenone, e.g. 9 , from the endo face of the molecule which has enough precedence in the literature. ${ }^{8}$ For the construction of a bicyclo[2.2.2]oct-5-en-2-one, ${ }^{9}(R)$-carvone $\mathbf{1 0}$ was chosen as the chiral starting material. To begin with, attention was focused on the synthesis of a chiral isotwistane derivative from carvone, (see Scheme 3). It was established ${ }^{9}$ that the presence of a good leaving group at the C-9 position of carvone and generation of

the thermodynamic dienolate leads to bicyclo[2.2.2]oct-5-en-2one 11 via an intramolecular alkylation reaction (Scheme 2), Comparison of the enones $\mathbf{1 1}$ and 9 , readily reveals the presence of an extra methylene group at the C-8 carbon in $\mathbf{1 1}$ which needs to be degraded, whereas the C-3 methyl group is missing in 11 which can be obtained by appropriate choice of starting material. The same strategy was opted for in the preparation of an analogue of $\mathbf{9}$, the enone $\mathbf{1 2}$, starting from α^{\prime}-methylcarvone 13 with an option to degrade the C-8 exomethylene group at a later stage.

The requisite starting material, α^{\prime}-methylcarvone 13, was obtained by alkylation of carvone. ${ }^{10}$ Thus, generation of the kinetic enolate of (R)-carvone with LDA followed by alkylating with methyl iodide furnished a 3:2 mixture of methylcarvone $\mathbf{1 3}$ in 98% yield (Scheme 3). ${ }^{10}$ Even though partial crystallisation of the mixture from hexane furnished the trans α^{\prime}-methylcarvone 13a, the sequence was carried out with the mixture of isomers of 13, and converged into a single compound at a later stage. Bromination ${ }^{11}$ of a $3: 2$ mixture of methylcarvone $\mathbf{1 3}$ using NBS and sodium acetate in 10:1 acetic acid-dichloromethane furnished a $4: 1$ epimeric mixture of the allyl bromide $\mathbf{1 4}$ in 65% yield along with 15% of a mixture of addition products 15a. Interestingly, reaction of methylcarvone $\mathbf{1 3}$ with NBS in 2:3 methanol-dichloromethane furnished stereochemically pure allyl bromide 14a in 43% yield, in addition to 17% of a mixture of the addition products $\mathbf{1 5 b}$. The regioselectivity of the reaction was further established by performing the reaction with a sample enriched with trans isomer 13a. Reaction of a 5:1 mixture of the trans- and cis-isomers of 13 with NBS in methanol-dichloromethane furnished predominantly the allyl bromide 14a, in 68% yield. Formation of the allyl bromide 14a has been observed in the corresponding dimethylated derivatives. ${ }^{12}$ Intramolecular alkylation ${ }^{9}$ of the allyl bromide $\mathbf{1 4}$ using a 1 m solution of potassium tert-butoxide in 2-methylpropan-2-ol and THF generated a 3:2 epimeric mixture of the bicyclic compound $\mathbf{1 2}$ in 58% yield, whose structure and epimeric nature was established from its spectral data. It is worth mentioning that the intramolecular alkylation reaction of the stereochemically pure allyl bromide 14a also furnished an epimeric mixture of the bicyclic enones 12, obviously due to the equilibration of the product after cyclisation under the reaction conditions. Prenyl bromide was selected as the five carbon unit for alkylation, anticipating that the trisubstituted olefin moiety could be exploited to generate a suitable radical precursor. Thus, kinetic alkylation of the enolate generated from the enone 12 using LDA with prenyl bromide in the presence of HMPT at low temperature $\left(-90^{\circ} \mathrm{C}\right)$ stereoselectivity furnished the alkylated product 16 in 95% yield, whose structure was delineated from its spectral data. The stereochemistry of the alkylation was assigned based on precedence in the literature ${ }^{8}$ and was confirmed from subsequent transformations. Even though there are three olefinic groups present in 16, it was anticipated that the electron rich trisubstituted olefin in the side chain could be brominated ${ }^{11}$ in a regioselective manner. A bromohydrin was chosen as the radical precursor in anticipation that the tert-hydroxy group could be utilised at a later stage for controlling the stereochemistry of the isopropyl group. Thus, slow addition of 1.0 equiv. of NBS to the triene $\mathbf{1 6}$ in a 1:1 mixture of water and THF furnished a mixture of the bromohydrin $\mathbf{1 7}$ and the regioisomeric bromohydrin 18 in 64 and 4% yield, respectively, which were separated by column chromatography on silica gel. Refluxing a 0.02 m benzene solu-

10

13 (3:2)

tion of the bromohydrin $\mathbf{1 7}$ using 1.1 equiv. of tri- n-butyltin hydride in the presence of a catalytic amount of AIBN furnished a 2.8:6:1 mixture of the isotwistanes 19, 20 and the rearranged compound $\mathbf{2 1}$ in near quantitative yield. Chromatographic purification on a silica gel column furnished the isotwistane 19 and an inseparable mixture of the isotwistane 20 and the rearranged compound 21. The individual isomers $\mathbf{2 0}$ and $\mathbf{2 1}$ were resolved at a later stage of the sequence.
Since dehydration would lead to a diene, resulting in regiochemical problems in the oxidation step, the exo methylene moiety in the isotwistanes $\mathbf{1 9}$ and $\mathbf{2 0}$ was oxidatively cleaved prior to the dehydration of the tertiary alcohol. The sequence was carried out first with the isotwistane 19, Scheme 4 . Thus, ozonation of the isotwistane 19 in methanol and dichloromethane followed by reductive work-up with dimethyl sulfide furnished the diketo alcohol 22, in 67% yield, which on dehydration with a catalytic amount of p-toluenesulfonic acid in refluxing benzene furnished the enedione 23 in 95% yield. Huang-Minlon modified Wolf-Kishner reduction of the enedione $\mathbf{2 3}$ furnished the enone $\mathbf{2 4}$ in 90% yield via regioselective

22

25

24

Scheme 4
reduction of the C-8 ketone leaving the sterically crowded C-2 ketone intact. The structure of the enone $\mathbf{2 4}$ was established from its spectral data and further confirmed by chemical degradation to the dione 25 . Ozonolysis of the enone 24 furnished the dione $\mathbf{2 5}$, in 79% yield, whose structure was established by comparison of its spectral data (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) with that of an authentic ${ }^{5 a, c}$ racemic sample. Chang and Chang ${ }^{5 a}$ have stereoselectively transformed the racemic dione 25 into (\pm)-2-pupukeanone 5 in three steps.

After successfully transforming the isotwistane 19 into the enone 24 , the mixture of isotwistane 20 and rearranged product 21 was transformed into a mixture of the enones 24 and 26 following the same sequence, i.e. ozonolysis $(\longrightarrow 27+28)$, dehydration $(\longrightarrow \mathbf{2 3}+\mathbf{2 9})$ and deoxygenation, which was resolved chemically (Scheme 5). Reduction of the carbonyl

group using lithium in liquid ammonia transformed the mixture of the enones $\mathbf{2 4}$ and $\mathbf{2 6}$ into a $4.3: 1$ mixture of the alcohols $\mathbf{3 0}$ and 31 in 84% yield, which were separated by silica gel column chromatography. The two alcohols $\mathbf{3 0}$ and $\mathbf{3 1}$ were individually oxidised by PCC to the enones 24 and 26. A plausible mechanism via a homoallyl-homoallyl radical rearrangement for the formation of the rearranged compound 21 from the bromohydrin 17 is depicted in Scheme 6. Addition of the radical 32, obtained by the initial 5-exo-trig radical cyclisation of the bromohydrin $\mathbf{1 7}$, to the carbonyl group via a 3-exo-trig cyclisation generates a cyclopropoxy radical 33. Opening of the

cyclopropane ring via the cleavage of the C-5-C-6 bond leads to the formation of a stable tertiary radical 34 which abstracts hydrogen from tri- n-butyltin hydride from the exo face resulting in the formation of the product $21 .^{13}$

An alternative methodology, similar to that used by Kaliappan and Subba Rao, ${ }^{5 b}$ for the synthesis of enedione 23 via a 5-exo-trig allyl radical cyclisation reaction ${ }^{14}$ was also conceived (see Scheme 7). Consequently, regio- and stereo-

Scheme 7
selective alkylation of the enolate generated from the enone $\mathbf{1 2}$ using LDA in the presence of HMPT with 1,4-dibromo-2-methylbut-2-ene at $-90^{\circ} \mathrm{C}$ furnished the bromo compound 35 in 73% yield. The regioselectivity in the alkylation was established from the absence of a coupling between the bromomethylene and the olefinic proton of the side chain in 35 . The 5-exotrig allyl radical cyclisation ${ }^{14}$ of the allyl bromide 35 in 0.005 m refluxing benzene solution by slow addition of a solution of tri- n-butyltin hydride and AIBN furnished a mixture of iso-
twistane $\mathbf{3 6}$ and a minor amount of the rearranged product 37 (Scheme 7). Attention was then turned towards the degradation of the C-8 methylene and isomerisation of the isopropenyl group to an isopropylidene moiety in the isotwistane 36. Ozonolysis of the mixture of $\mathbf{3 6}$ and $\mathbf{3 7}$ furnished a mixture of triketones which on regioselective Wittig reaction with methylenetriphenylphosphorane followed by isomerisation of the resultant isopropenyl moiety with RhCl_{3} furnished a mixture of the enediones 23 and $\mathbf{2 9}$, whose spectral data (IR and ${ }^{1} \mathrm{H}$ NMR) were found to be identical with that of the sample obtained earlier.

Finally, hydrogenation of the enone 24 in ethanol, using platinum oxide as the catalyst, furnished a $2.5: 1$ mixture of (\pm)-2-pupukeanone 5 and 5-epi-2-pupukeanone $\mathbf{6}$ in 62% yield (Scheme 8). In an attempt to improve the stereoselectivity,

hydrogenation was also carried out on the enedione $\mathbf{2 3}$ prior to the deoxygenation but no improvement was noticed in stereoselectivity. The 2-pupukeanone and 5-epi-2-pupukeanones (\pm) - $\mathbf{5}$ and 6 obtained in this study exhibited spectral data $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR and mass) identical to that reported for the racemic compounds by Frater and Wenger. ${ }^{4 b}$

In conclusion, we have achieved the first enantiospecific total synthesis of (+)-2-pupukeanone and 5-epi-2-pupukeanones starting from (R)-carvone in 10 steps. Even though the present strategy provided the optical antipodes of the natural series, the ready availability of both (R) - and (S)-enantiomers of carvone makes the strategy suitable for either of the enantiomeric series.

Experimental

Melting points were recorded using a Tempo melting point apparatus in capillary tubes and are uncorrected. IR Spectra as thin films were recorded on a Perkin-Elmer 781 spectrophotometer. ${ }^{1} \mathrm{H}\left(90,200\right.$ and 400 MHz) and ${ }^{13} \mathrm{C}$ NMR (22.5 and $50 \mathrm{MHz})$ spectra were recorded on JEOL FX-90Q, Bruker ACF-200 and AMX-400 spectrometers. The chemical shifts $(\delta \mathrm{ppm})$ and the coupling constants $J(\mathrm{~Hz})$ are reported in the standard fashion with reference to either internal tetramethylsilane (for ${ }^{1} \mathrm{H}$) or the central line (77.1 ppm) of $\mathrm{CDCl}_{3}\left(\right.$ for ${ }^{13} \mathrm{C}$). In the ${ }^{13} \mathrm{C}$ NMR spectra, off-resonance multiplicities, when recorded, are given in parentheses. Low and high resolution mass measurements were carried out using a JEOL JMS-DX 303 GC-MS instrument using a direct inlet mode. Relative intensities of the ions are given in parentheses. Optical rotations were measured using a JASCO DIP-370 digital polarimeter and $[a]_{\mathrm{D}}$ values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Ozonolysis experiments were carried out using a Penwalt Wallace and Tierman ozonator. Hydrogenation reactions at atmospheric pressure were carried out using a balloon. Acme's silica gel (100-200 mesh) was used for column chromatography. All small scale dry reactions were carried out using standard syringeseptum techniques. Anhydrous solvents were obtained by standard procedures. AIBN was recrystallised from methanol and stored in the dark. All the commercial reagents, obtained from Fluka or Merck, were used without further purification.

(-)-(5R,6S)-5-(3-Bromoprop-1-en-2-yl)-2,6-dimethylcyclo-hex-2-enone 14a

To a cold $\left(-10^{\circ} \mathrm{C}\right)$ magnetically stirred solution of a $5: 1$ mix-
ture of methylcarvone $\mathbf{1 3}(121 \mathrm{mg}, 0.74 \mathrm{mmol})$ in a $3: 2$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MeOH}(2.5 \mathrm{ml})$ was slowly added NBS (144 mg , 0.81 mmol) over a period of 20 min . The reaction mixture was slowly warmed up to RT and stirred for 16 h at RT. It was then diluted with water $(3 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic layer was washed with 5% aq. NaOH $(2 \mathrm{ml})$ followed by brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 40$ to $1: 10$) as eluent furnished the allyl bromide 14 a ($121 \mathrm{mg}, 68 \%$), mp $52-53^{\circ} \mathrm{C}$ (hexanes); $[a]_{\mathrm{D}}^{26}-37.9$ (c 2.7, CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1} \quad 1670$, $900 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{C}-\mathrm{C}=\mathrm{O}), 5.39$ $(1 \mathrm{H}, \mathrm{s})$ and $5.11\left(1 \mathrm{H}\right.$, s) $\left(\mathrm{C}=\mathrm{CH}_{2}\right), 3.99$ and $3.97(2 \mathrm{H}, \mathrm{AB}$ $\left.\mathrm{q}, J 10.3, \mathrm{CH}_{2} \mathrm{Br}\right), 2.4-2.7(4 \mathrm{H}, \mathrm{m}), 1.78(3 \mathrm{H}$, s, olefinic $\left.\mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{sec}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 199.6 (s, C=O), 146.0 ($\mathrm{s}, C=\mathrm{CH}_{2}$), 142.1 (d, $C \mathrm{H}=\mathrm{C}-\mathrm{C}=\mathrm{O}$), 134.0 ($\mathrm{s}, \mathrm{CH}=\mathrm{C}-\mathrm{C}=\mathrm{O}$), $116.5\left(\mathrm{t}, \mathrm{C}=C \mathrm{H}_{2}\right), 45.7$ (d) and 44.9 (d) (C-5 and -6), $35.3\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Br}\right), 32.1$ (t, C-4), 15.5 (q) and 12.3 (q) $\left(2 \times \mathrm{CH}_{3}\right) ; m / z 244\left(\mathrm{M}^{+}+2,0.8 \%\right), 242\left(\mathrm{M}^{+}, 0.8\right), 163$ (21), 82 (100). Further elution of the column furnished a diastereomeric mixture of the addition product $\mathbf{1 5 b}(40 \mathrm{mg}$, 20%).

(-)-($1 S, 3 R, 4 R$)- and ($1 S, 3 S, 4 R$)-1,3-Dimethyl-8-methylene-bicyclo[2.2.2]oct-5-en-2-one 12

To a cold $\left(-5^{\circ} \mathrm{C}\right)$ magnetically stirred solution of potassium tert-butoxide [35.9 mmol , prepared from potassium ($1.4 \mathrm{~g}, 35.9$ mmol) and $\mathrm{Bu}^{t} \mathrm{OH}(40 \mathrm{ml})$] in THF (56 ml) under a nitrogen atmosphere was added the bromoenone $\mathbf{1 4}(4.5 \mathrm{~g}, 18.5 \mathrm{mmol})$ in THF (85 ml). The reaction mixture was slowly warmed up to RT and stirred for 3 h . It was then quenched with water and extracted with diethyl ether $(3 \times 50 \mathrm{ml})$. The ether extract was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 99$ to $1: 50$) as eluent furnished a $3: 2$ epimeric mixture of the bicyclic compound $12(1.75 \mathrm{~g}, 58 \%)$ as an oil; $[a]_{\mathrm{D}}^{26}-525\left(c 3.4, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1715,1650,880 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3: 2\right.$ diastereomeric mixture) 6.56 and $6.43(1 \mathrm{H}$, dd, $J 7.7$ and $6.4, \mathrm{H}-5), 5.89$ and $5.84(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $1.5, \mathrm{H}-6), 4.94$ (s) and 4.84 $(\mathrm{q}, J 1.0)$ and $4.73(\mathrm{q}, J 1.0)\left[2 \mathrm{H}, \mathrm{C}(8)=\mathrm{CH}_{2}\right], 3.0-3.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4), 1.9-2.5(3 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{s}$, tert-CH3$), 1.11$ and 1.02 ($3 \mathrm{H}, \mathrm{d}, J 7.0$, sec $-\mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3: 2\right.$ mixture) 213.8 and 212.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 146.6 and $143.3\left(\mathrm{~s}, \mathrm{C}=\mathrm{CH}_{2}\right), 135.8$ and 134.1 (d) and 133.6 and 132.5 (d) $(\mathrm{CH}=\mathrm{CH}), 105.7$ and $107.7\left(\mathrm{t}, \mathrm{C}=\mathrm{CH}_{2}\right), 49.9$ and $49.5(\mathrm{~s}, \mathrm{C}-1), 49.1$ and $48.8(\mathrm{~d}$, $\mathrm{C}-3$), 41.7 and 43.6 (d, C-4), 38.0 and 37.5 (t, C-7), 16.7 (q) and $14.9(\mathrm{q})\left(2 \times \mathrm{CH}_{3}\right) ; m / z 162\left(\mathrm{M}^{+}, 10 \%\right), 133(25), 106$ (100), 91 (92); HRMS: m / z for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}$, Calc.: 162.1048. Found: 162.1049.

(-)-(1S,3S,4S)-1,3-Dimethyl-3-(3-methylbut-2-en-1-yl)-8-methylenebicyclo[2.2.2]oct-5-en-2-one 16

To a cold $\left(-90^{\circ} \mathrm{C}\right)$ magnetically stirred solution of LDA [prepared from diisopropylamine ($452 \mathrm{mg}, 0.63 \mathrm{ml}, 4.47 \mathrm{mmol}$) and $\mathrm{Bu}^{n} \mathrm{Li}$ ($4.43 \mathrm{mmol}, 2.05 \mathrm{ml}$ of a 2.16 m solution in hexane)] in 3 ml of dry THF was added a solution of the dienone 12 (244 $\mathrm{mg}, 1.5 \mathrm{mmol}$) in 3 ml of dry THF over a period of 10 min . The reaction mixture was stirred for 40 min at the same temperature and then HMPT ($714 \mathrm{mg}, 0.7 \mathrm{ml}, 3.98 \mathrm{mmol}$) was added. The reaction mixture was stirred for 10 min and treated with prenyl bromide ($882 \mathrm{mg}, 0.69 \mathrm{ml}, 5.92 \mathrm{mmol}$), slowly warmed up to RT and stirred for 8 h . It was then diluted with water (2 ml) and extracted with diethyl ether ($3 \times 15 \mathrm{ml}$). The combined organic extracts were washed with $3 \mathrm{~m} \mathrm{HCl}(2 \mathrm{ml})$, saturated aqueous NaHCO_{3} and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane $(1: 50$ to $1: 20)$ as eluent furnished the alkylated compound 16 ($328 \mathrm{mg}, 95 \%$) as an oil; $[a]_{\mathrm{D}}^{24}-304\left(c 1.71, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1715,1645,880$;
$\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.45(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $6.4, \mathrm{H}-5), 5.82$ $(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.5, \mathrm{H}-6), 5.13(1 \mathrm{H}, \mathrm{t}$, with further couplings, $\left.J 8.1, \mathrm{H}-2^{\prime}\right), 4.91(1 \mathrm{H}, \mathrm{br}$ s) and $4.78(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ $\left[\mathrm{C}(8)=\mathrm{CH}_{2}\right], 3.03(1 \mathrm{H}$, dd, $J 6.4$ and $1.5, \mathrm{H}-4), 2.33$ and 2.19 ($2 \mathrm{H}, \mathrm{t}$ of AB q, $J 16.9$ and 2.1, H-7), 2.19 and $2.02(2 \mathrm{H}$, d of AB q, $J 17.4$ and $\left.8.1, \mathrm{H}-1^{\prime}\right), 1.75(3 \mathrm{H}, \mathrm{s})$ and $1.59(3 \mathrm{H}, \mathrm{s})$ $\left[\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.23\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(1)-\mathrm{CH}_{3}\right], 0.99\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(3)-\mathrm{CH}_{3}\right]$; $\delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 216.0(\mathrm{~s}, \mathrm{C}=\mathrm{O})$), 145.1 ($\mathrm{s}, \mathrm{C}-8$), 135.7 (d) and 132.4 (d) (C-5 and -6), 134.3 ($\mathrm{s}, \mathrm{C}-3^{\prime}$), 119.1 (d, C-3'), 108.2 $\left[\mathrm{t}, \mathrm{C}(8)=\mathrm{CH}_{2}\right], 51.8(\mathrm{~d}, \mathrm{C}-4), 50.1(\mathrm{~s})$ and 46.7 (s) (C-1 and -3), $38.5(\mathrm{t})$ and $35.9(\mathrm{t})\left(\mathrm{C}-7\right.$ and $\left.-1^{\prime}\right), 26.0(\mathrm{q}), 21.6(\mathrm{q}), 18.0(\mathrm{q})$ and 17.4 (q) $\left(4 \times \mathrm{CH}_{3}\right) ; m / z 230\left(\mathrm{M}^{+}, 8 \%\right), 125(15), 106(100), 91$ (75); HRMS: m / z for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$, Calc.: 230.1671. Found: 230.1656.
(-)-(1S,3S,4S)-3-(2-Bromo-3-hydroxy-3-methylbutyl)-1,3-dimethyl-8-methylenebicyclo[2.2.2]oct-5-en-2-one 17 and (-)($1 S, 3 S, 4 S$)-3-(3-bromo-2-hydroxy-3-methylbutyl)-1,3-dimethyl-8-methylenebicyclo[2.2.2]oct-5-en-2-one 18
To a cold $\left(-10^{\circ} \mathrm{C}\right)$ magnetically stirred solution of the triene $\mathbf{1 6}$ $(1.18 \mathrm{~g}, 5.13 \mathrm{mmol})$ in THF (19.5 ml) and water (4.9 ml) was slowly added NBS ($869 \mathrm{mg}, 4.88 \mathrm{mmol}$) over a period of 45 min . The reaction mixture was slowly warmed up to RT and stirred for 24 h . It was then diluted with water (10 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The organic extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 50$ to $1: 7$) as eluent furnished first the unreacted starting material ($320 \mathrm{mg}, 27 \%$). Further elution of the column furnished the regioisomeric bromohydrins $\mathbf{1 8}(70 \mathrm{mg}, 4 \%)$ and $\mathbf{1 7}(783 \mathrm{mg}, 64 \%$ based on consumed starting material) as oils. For the bromohydrin 17: $[a]_{\mathrm{D}}^{25}$ $-255\left(c 1.22, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3460,1710,1650,885 ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.58(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $6.4, \mathrm{H}-5), 5.81(1 \mathrm{H}, \mathrm{dd}$, $J 7.9$ and $1.5, \mathrm{H}-6), 4.99(1 \mathrm{H}, \mathrm{s})$ and $4.83(1 \mathrm{H}, \mathrm{s})\left[\mathrm{C}(8)=\mathrm{CH}_{2}\right]$, $4.22(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $1.3, \mathrm{CHBr}), 3.52(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and 1.4 , H-4), 2.0-2.4 ($3 \mathrm{H}, \mathrm{m}$), $1.92(1 \mathrm{H}, \mathrm{dd}, J 16.2$ and $8.5, \mathrm{H}-1 \mathrm{l} \mathrm{a})$, $1.32(3 \mathrm{H}, \mathrm{s})$ and $1.27(3 \mathrm{H}, \mathrm{s})\left[\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.22[3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(1)-\mathrm{CH}_{3}\right], 1.07\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(3)-\mathrm{CH}_{3}\right] ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 216.1 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 144.4 ($\mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$), 136.5 (d) and 131.8 (d) $(\mathrm{CH}=\mathrm{CH}), 108.9\left(\mathrm{t}, \mathrm{C}=\mathrm{CH}_{2}\right), 72.9(\mathrm{~s}, \mathrm{COH}), 63.3(\mathrm{~d}, C \mathrm{HBr})$, 51.9 (d, C-4), $50.0(\mathrm{~s})$ and $45.6(\mathrm{~s})(\mathrm{C}-1$ and -3), 41.9 (t), $38.2(\mathrm{t})$, $26.1(\mathrm{q})$ and $25.5(\mathrm{q})\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 21.5(\mathrm{q})$ and $17.4(\mathrm{q})[2 \times$ tertCH_{3}]; $m / z 327\left(\mathrm{M}^{+}+1,1.2 \%\right), 329\left(\mathrm{M}^{+}+3,1\right), 311(24), 247$ (12), 229 (15), 201 (30), 141 (20), 107 (100); HRMS: m / z for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}(\mathrm{M}-\mathrm{Br})$, Calc.: 247.1698. Found: 247.1681. For the minor bromohydrin 18: $v_{\max } / \mathrm{cm}^{-1} 3500,1720,1650,875 ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.19(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $6.5, \mathrm{H}-5), 5.87(1 \mathrm{H}, \mathrm{dd}$, $J 8.4$ and $1.5, \mathrm{H}-6), 4.81(1 \mathrm{H}, \mathrm{q}, J 1.9)$ and $4.7(1 \mathrm{H}, \mathrm{q}, J 1.9)$ $\left(\mathrm{C}=\mathrm{CH}_{2}\right), 4.09(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and $6.4, \mathrm{CHOH}), 3.55(1 \mathrm{H}, \mathrm{d}$, $J 3.0), 2.8(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and 1.9$), 1.6-2.5(4 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{s})$ and $1.64(3 \mathrm{H}, \mathrm{s})\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CBr}\right], 1.2\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(1)-\mathrm{CH}_{3}\right], 1.11[3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}(3)-\mathrm{CH}_{3}\right] ; m / z 329\left(\mathrm{M}^{+}+2,6 \%\right), 327\left(\mathrm{M}^{+}, 6\right), 311(4), 247$ (6), 220 (44), 222 (44), 159 (11), 134 (85), 132 (85), 106 (100), 95 (60), 91 (100).

(+)-($1 R, 3 S, 5 R, 6 S, 7 S)$ - and (+)-($1 R, 3 S, 5 S, 6 S, 7 S)-5-(2-$ Hydroxypropan-2-yl)-1,3-dimethyl-8-methylenetricyclo[4.3.1.0 ${ }^{3,7}$]decan-2-one 19 and 20

To a refluxing solution of the bromohydrin $17(700 \mathrm{mg}, 2.14$ $\mathrm{mmol})$ and $\mathrm{Bu}^{n}{ }_{3} \mathrm{SnH}(649 \mathrm{mg}, 0.59 \mathrm{ml}, 2.23 \mathrm{mmol})$ in dry benzene (200 ml) was added AIBN (catalytic) and refluxed for 4 h . The solvent was evaporated under reduced pressure, diluted with water and extracted with diethyl ether $(2 \times 20 \mathrm{ml})$. The combined organic extracts were washed with 1% aq. ammonia and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 20$ to $1: 5$) furnished first the isotwistane 19 ($150 \mathrm{mg}, 28 \%$), $\mathrm{mp} 80-82^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{25}+18.0(c$ $\left.1.67, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3500,1710,1650,885 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) 4.91(1 \mathrm{H}, \mathrm{q}, J 1.9)$ and $4.78(1 \mathrm{H}, \mathrm{q}, J 1.9)\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, $1.35-2.65(9 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{s})$ and $1.12(3 \mathrm{H}, \mathrm{s})\left[\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $1.09\left(3 \mathrm{H}, \mathrm{s}\right.$, tert- $\left.\mathrm{CH}_{3}\right)$, $0.93\left(3 \mathrm{H}\right.$, s, tert $\left.-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(22.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 221.9(\mathrm{C}=\mathrm{O}), 143.8\left(\mathrm{C}=\mathrm{CH}_{2}\right), 110.1\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, $71.4(\mathrm{COH})$, 57.6, 54.7, 50.6, 43.0, 41.0, 40.4, 36.2, 31.7, 30.4, 28.7, 23.3 and 19.5; $m / z 248$ ($\mathrm{M}^{+}, 15 \%$), 190 (30), 159 (20), 136 (100); HRMS: m / z for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$, Calc.: 248.1776. Found: 248.1782. Further elution of the column furnished a $\sim 1: 6$ mixture of the rearranged product 21 and the isotwistane 20 (370 $\mathrm{mg}, 70 \%), \mathrm{mp} 106-108{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{27}+49.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max } /$ $\mathrm{cm}^{-1} 3480,1715,885 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, peaks due to the isotwistane 20) $4.97(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s})\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, 2.25-2.5 ($2 \mathrm{H}, \mathrm{m}$), $2.27\left(2 \mathrm{H}\right.$, br s, allylic $\left.\mathrm{CH}_{2}\right), 1.85-2.05(2 \mathrm{H}$, $\mathrm{m})$, $1.25-1.6(3 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{s})$ and $1.16(3 \mathrm{H}, \mathrm{s})$ $\left[\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.09\left(3 \mathrm{H}, \mathrm{s}\right.$, tert- $\left.\mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}\right.$, tert- $\left.\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, peaks due to the isotwistane 20) 221.3 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 143.1 ($\mathrm{s}, C=\mathrm{CH}_{2}$), 110.6 ($\mathrm{t}, \mathrm{C}=C \mathrm{H}_{2}$), 72.0 (s , COH), 57.9 (d), 55.2 (2 C , s and t t, 43.6 (s), 42.2 (d), 40.3, 39.6, 39.1, $28.1(\mathrm{q}), 26.6(\mathrm{q}), 19.5(\mathrm{q})$ and $18.8(\mathrm{q})\left(4 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z} 248$ $\left(\mathrm{M}^{+}, 20 \%\right), 190(35), 187(20), 159$ (30), 147 (20), 136 (70), 59 (100); HRMS: m / z for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$, Calc.: 248.1776. Found: 248.1760 .

(+)-(1R,3S,5R,6R,7R)-5-(2-Hydroxypropan-2-yl)-1,3-dimethyltricyclo[4.3.1.0 ${ }^{3,7}$]decane-2,8-dione 22

A pre-cooled $\left(-90^{\circ} \mathrm{C}\right)$ mixture of ozone in oxygen was passed through a solution of the isotwistane $19(60 \mathrm{mg}, 0.24 \mathrm{mmol})$ and NaHCO_{3} (catalytic) in $\mathrm{MeOH}(0.1 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ until the blue colour persisted. The excess ozone was removed by flushing the solution with oxygen. Dimethyl sulfide (169 mg , $0.2 \mathrm{ml}, 2.7 \mathrm{mmol}$) was added to the reaction mixture, which was slowly warmed up to RT and stirred for 8 h . Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 5$ to $1: 2.5$) as eluent furnished the diketo alcohol 22 ($40 \mathrm{mg}, 67 \%$), which was recrystallised from a 1:10 mixture of ethyl acetate and hexane, mp 106$10{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{25}+26.6\left(c 1.28, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3490,1720,1700$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.81(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $5.6, \mathrm{H}-6), 2.72$ ($1 \mathrm{H}, \mathrm{d}, J 12.7, \mathrm{H}-10 \mathrm{a}), 2.49(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-7), 2.22(2 \mathrm{H}, \mathrm{s}$, H-9), 2.1-2.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.0(1 \mathrm{H}, \mathrm{dd}, J 13.3$ and 7.6 , $\left.\mathrm{H}-4_{\text {endo }}\right), 1.75\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.11.3, \mathrm{H}-4_{\text {exo }}\right), 1.59(1 \mathrm{H}, \mathrm{dd}$, $J 14.4$ and $\left.9.9, \mathrm{H}-10_{\mathrm{exo}}\right), 1.30(3 \mathrm{H}, \mathrm{s})$ and $1.20(3 \mathrm{H}, \mathrm{s})$ $\left[\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.18(3 \mathrm{H}, \mathrm{s})$ and $1.07(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ 250 ($\mathrm{M}^{+}, 8 \%$), 232 (35), 192 (28), 161 (22), 138 (45), 109 (18), 59 (100); HRMS: m / z for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$, Calc.: 250.1569. Found: 250.1570.

(+)-($1 R, 3 S, 6 S, 7 R$)-5-Isopropylidene-1,3-dimethyltricyclo[4.3.1.0 ${ }^{3,7}$]decane-2,8-dione 23

A magnetically stirred solution of the diketo alcohol $22(40 \mathrm{mg}$, 0.16 mmol) and PTSA (catalytic) in dry benzene (4 ml) was refluxed for 6 h . The solvent was evaporated under reduced pressure. The reaction mixture was then diluted with diethyl ether (10 ml), washed with saturated aq. NaHCO_{3} and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 10$ to $1: 5$) as eluent furnished the enedione $23(35 \mathrm{mg}, 95 \%) ;[a]_{\mathrm{D}}^{26}+82.4$ (c $\left.3.12, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1730$, $1710 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.26(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $5.3, \mathrm{H}-6)$, 2.56 ($1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{H}-7$), 2.51 ($1 \mathrm{H}, \mathrm{d}, J 16.0$, H-9a), 2.26 (2 H , close AB q, H-4), $2.12(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{H}-9 \mathrm{~b}), 2.03(1 \mathrm{H}$, dd, $J 13.3$ and $\left.9.1, \mathrm{H}-10_{\text {exo }}\right), 1.63(3 \mathrm{H}, \mathrm{s})$ and $1.57(3 \mathrm{H}, \mathrm{s})(2 \times$ olefinic $\left.\mathrm{CH}_{3}\right), 1.42\left(1 \mathrm{H}, \mathrm{dd}, J 13.2, \mathrm{H}-10_{\text {endo }}\right), 1.19(3 \mathrm{H}, \mathrm{s})$ and $1.07\left(3 \mathrm{H}\right.$, s) $\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 217.6$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 211.7 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 136.1 (s) and 124.6 (s$)(\mathrm{C}=\mathrm{C}), 62.2$ (d, C-7), $54.9(\mathrm{~s})$ and $44.9(\mathrm{~s})(\mathrm{C}-1$ and -3$), 47.9(\mathrm{t}), 42.2(\mathrm{t})$, 40.1 (d), 39.1 (t), 21.0 (q), 20.6 (q), 19.4 (q) and 19.2 (q) $\left(4 \times \mathrm{CH}_{3}\right) ; m / z 232\left(\mathrm{M}^{+}, 72 \%\right), 217$ (10), 189 (12), 161 (15), 149 (27), 121 (100); HRMS: m / z for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$, Calc: 232.1463. Found: 232.1471.

(+)-($1 S, 3 S, 6 S, 7 R$)-5-Isopropylidene-1,3-dimethyltricyclo[4.3.1.0 ${ }^{3,7}$]decane-2-one 24

A solution of the dione $\mathbf{2 3}$ ($31 \mathrm{mg}, 0.134 \mathrm{mmol}$) and hydrazine monohydrate ($93 \mathrm{mg}, 0.09 \mathrm{ml}, 1.86 \mathrm{mmol}, 99 \%$) in diethylene glycol (digol, 0.9 ml) and ethylene glycol (0.25 ml) were placed in a Carius tube, and heated to $180^{\circ} \mathrm{C}$ for 2 h . The Carius tube was cooled to $70^{\circ} \mathrm{C}$ and a solution of sodium ($37 \mathrm{mg}, 1.61$ $\mathrm{mmol})$ in digol $(0.75 \mathrm{ml})$ was added. The reaction mixture was further heated at $180^{\circ} \mathrm{C}$ for 4 h . It was then cooled to RT, poured into water $(5 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The organic extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexane ($1: 40$) as eluent furnished the enone $24(26 \mathrm{mg}, 90 \%)$; $[a]_{\mathrm{D}}^{26}+101.8$ (c 2.26, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 1725$ and $1710 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.92 (1 H , dd, $J 8.7$ and 3.8 , H-6), 2.34 ($1 \mathrm{H}, \mathrm{d}, J 16.7$), $1.5-2.1$ $(8 \mathrm{H}, \mathrm{m}), 1.63(3 \mathrm{H}, \mathrm{s})$ and $1.53(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ olefinic $\left.\mathrm{CH}_{3}\right), 1.19$ $(3 \mathrm{H}, \mathrm{s})$ and $0.90(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ tert- $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $222.5(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 137.5(\mathrm{~s})$ and $122.7(\mathrm{~s})(C=C), 53.8$ and 42.3 (s, C-1 and -3), 45.5 (d, C-6), 42.6 (t, C-4), 40.7 (d, C-7), 38.4 (t), 32.8 (t), 20.8 ($2 \mathrm{C}, \mathrm{q}$ and t), 20.5 (q), 18.7 (q), 17.1 (q); $m / z 218\left(\mathrm{M}^{+}, 100 \%\right), 203(11), 175$ (42), 165 (52), 147 (28), 134 (84); HRMS: m / z for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}$, Calc.: 218.1671. Found: 218.1670 .

$(+)-(1 S, 3 S, 6 S, 7 R)-1,3-$ Dimethyltricyclo[4.3.1.0 $\left.0^{3,7}\right]$ decane-2,5dione 25

Ozonolytic cleavage of the isopropylidene moiety in compound $24(35 \mathrm{mg}, 0.16 \mathrm{mmol})$ in 0.1 ml MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ followed by reductive work-up with dimethyl sulfide (0.2 ml), as described for compound 22, followed by purification on a silica gel column using ethyl acetate-hexane ($1: 5$ to $1: 2.5$) as eluent furnished the dione $\mathbf{2 5}$ ($24.3 \mathrm{mg}, 79 \%$), which was identified by comparison ${ }^{5 a, c}$ of its spectral data (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) with that of the authentic racemic sample; $[\alpha]_{\mathrm{D}}^{25}+27.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1740,1710 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.68(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 5.1, H-6), $2.35(1 \mathrm{H}, \mathrm{d}, J 18.6, \mathrm{H}-4 \mathrm{a}), 2.25(1 \mathrm{H}, \mathrm{m}), 2.11$ $(1 \mathrm{H}, \mathrm{d}, J 18.6$ and 1.4, H-4b), $2.02(1 \mathrm{H}, \mathrm{dd}, J 14.8$ and 10.8 , $\mathrm{H}-10_{\text {exo }}$), 1.85-2.1 ($2 \mathrm{H}, \mathrm{m}$), 1.6-1.75 ($2 \mathrm{H}, \mathrm{m}$), $1.4(1 \mathrm{H}, \mathrm{d}$, $\left.J 14.8, \mathrm{H}-10_{\text {endo }}\right), 1.31(3 \mathrm{H}, \mathrm{s})$ and $0.96(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 219.2(\mathrm{C}=\mathrm{O}), 217.1(\mathrm{C}=\mathrm{O}), 52.4$ (quat. C), 48.9, 48.7, 43.3, 42.4 (quat. C), 32.6 (2 C), 20.1, 18.6 and 16.2; $\mathrm{m} / \mathrm{z} 192\left(\mathrm{M}^{+}, 100 \%\right), 164$ (21), 149 (31), 138 (29), 121 (33), 107 (25), 94 (73).

(+)-(1S,3S,6S,7R)-5-Isopropylidene-1,3-dimethyltricyclo[4.3.1.0 ${ }^{3,7}$]decan-2-one 24 and (+)-($1 R, 2 R, 5 S, 6 S, 8 S$)-10-isopropylidene-5,8-dimethyltricyclo[4.4.0.0 ${ }^{2,8}$ decan-7-one 26

Ozonolysis of a $6: 1$ mixture of the isotwistane 20 and the rearranged product $21(154 \mathrm{mg}, 0.62 \mathrm{mmol})$ in 8 ml of CH_{2} Cl_{2} containing 0.2 ml of MeOH and a catalytic amount of NaHCO_{3} and reductive work-up with dimethyl sulfide (424 mg , $6.82 \mathrm{mmol}, 0.5 \mathrm{ml}$), as described for compound $\mathbf{2 2}$, followed by purification of the product on a silica gel column using ethyl acetate-hexane ($1: 5$ to $1: 2$) as eluent furnished a $6: 1$ mixture of the diketo alcohols 27 and $28(152 \mathrm{mg}, 98 \%) ;[a]_{\mathrm{D}}^{26}+56.8$ (c $5.35, \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1} 3440,1710 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ peaks due to the isotwistane 27: 2.6-2.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 2.55 $(1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{H}-7), 2.24(2 \mathrm{H}$, close AB q, H-9), 2.07(1 H , ddd, $J 13.2,8.9$ and $4.5, \mathrm{H}-5), 1.6-1.75(2 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{dd}, J 12.4$ and $8.4, \mathrm{H}-4), 1.37(1 \mathrm{H}, \mathrm{d}, J 14.0), 1.22(3 \mathrm{H}, \mathrm{s})$ and $1.15(3 \mathrm{H}$, s) $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}\right], 1.17(3 \mathrm{H}, \mathrm{s})$ and $1.1(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ peaks due to the isotwistane 27: 217.8 (s , C-2), 212.7 ($\mathrm{s}, \mathrm{C}-8$), 71.6 (s, COH), 61.3 (d, C-7), 58.9 (d), 55.8 (s) and 44.8 (s) (C-1 and -3), 47.4 (t, C-9), 41.7 (t), 39.4 (t), 38.1 (d), $28.3(\mathrm{q})$ and $26.5(\mathrm{q})\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 19.1(\mathrm{q})$ and 18.8 (q) $\left(2 \times\right.$ tert $-\mathrm{CH}_{3}$). Peaks due to compound 28: 212.7 (s, C-2), 211.1 (s, C-8), 71.0 (s, COH), 63.9 (d, C-7), 59.5, 57.0, 50.7, 47.4, 43.7, $36.0,33.0,28.5(\mathrm{q})$ and $27.2(\mathrm{q})\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.8(\mathrm{q})$ and 11.1 (q) $\left(2 \times \mathrm{CH}_{3}\right) ; m / z 250\left(\mathrm{M}^{+}, 16 \%\right), 232(18), 192(45), 138(25)$,

59 (100); HRMS: m / z for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$, Calc.: 250.1569. Found: 250.1568.

Dehydration of a mixture of the diketo alcohols 27 and 28 ($130 \mathrm{mg}, 0.52 \mathrm{mmol}$), obtained above, using p-toluenesulfonic acid (10 mg) in benzene (13 ml) at $100^{\circ} \mathrm{C}$ for 12 h furnished a mixture of the diones $\mathbf{2 3}$ and $\mathbf{2 9}$ ($112 \mathrm{mg}, 93 \%$). Huang-Minlon modified Wolff-Kishner reduction of a 6:1 mixture of the diones 23 and 29 ($125 \mathrm{mg}, 0.538 \mathrm{mmol}$) using hydrazine monohydrate ($371 \mathrm{mg}, 0.36 \mathrm{ml}, 7.41 \mathrm{mmol}, 99 \%$) in digol (3.6 $\mathrm{ml})$ and ethylene glycol $(0.9 \mathrm{ml})$, and sodium ($148 \mathrm{mg}, 6.43$ mmol) in digol (3 ml) at $180^{\circ} \mathrm{C}$ for 4 h as described earlier, furnished a mixture of the enediones $\mathbf{2 4}$ and $\mathbf{2 6}$ ($108 \mathrm{mg}, 92 \%$ yield).

Reduction of the mixture of enones 24 and 26

To a blue coloured magnetically stirred solution of lithium (15 $\mathrm{mg}, 2.15 \mathrm{mmol}$) in freshly distilled ammonia (35 ml) was slowly added a mixture of the enones 24 and $26(38 \mathrm{mg}, 0.174$ mmol) in 1 ml of dry THF. The reaction mixture was stirred for 1 h and quenched with solid ammonium chloride. The excess ammonia was evaporated, the residue was taken up in water (5 ml) and extracted with diethyl ether $(2 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 50$ to $1: 20$) as eluent afforded an epimeric mixture of the alcohol $30(26 \mathrm{mg}, 68 \%)$ and the alcohol $31(6.1 \mathrm{mg}, 16 \%)$ as oils.

Oxidation of compound 31

To a magnetically stirred solution of the alcohol $31(6 \mathrm{mg}, 0.027$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{ml})$ was added a mixture of PCC $(6 \mathrm{mg}$, $0.28 \mathrm{mmol})$ and silica gel (6 mg), which was stirred for 1 h at RT. The reaction mixture was then charged to a silica gel column and eluted with ethyl acetate-hexane $(1: 40)$ to furnish the enone 26 ($5.2 \mathrm{mg}, 88 \%$); $[a]_{\mathrm{D}}^{28}+115.0$ ($c 1.0, \mathrm{CHCl}_{3}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1735 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.7(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{C}=\mathrm{O}), 1.4-2.25$ $(9 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{s})$ and $1.51(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ olefinic $\left.\mathrm{CH}_{3}\right), 1.01$ $\left(3 \mathrm{H}, \mathrm{s}\right.$, tert $\left.-\mathrm{CH}_{3}\right), 1.0\left(3 \mathrm{H}, \mathrm{d}, J 6.7\right.$, $\left.\sec -\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 57.5,52.3,50.9,49.1,41.4,34.3,27.6,22.7,22.3,20.7$, 19.8, 11.8.

Oxidation of compound 30

Oxidation of an epimeric mixture of the alcohol $\mathbf{3 0}(35 \mathrm{mg}$, 0.159 mmol) with PCC ($50 \mathrm{mg}, 0.232 \mathrm{mmol}$) and silica gel (50 mg) for 1 h furnished the tricyclic ketone $24(32 \mathrm{mg}, 92 \%)$, which was identified by comparison of TLC and spectral data (IR and ${ }^{1} \mathrm{H}$ NMR) with the sample derived from the isotwistane 19.
(-)-(1S,3S,4S)-3-(4-Bromo-3-methylbut-2-en-1-yl)-1,3-dimethyl-8-methylenebicyclo[2.2.2]oct-5-en-2-one 35
Alkylation of the bicyclic enone 12 ($732 \mathrm{mg}, 4.52 \mathrm{mmol}$) in THF (9 ml) using LDA [generated from diisopropylamine $(1.343 \mathrm{~g}, 1.86 \mathrm{ml}, 13.2 \mathrm{mmol})$ and $\mathrm{Bu}{ }^{n} \mathrm{Li}(13.1 \mathrm{mmol}, 6.7 \mathrm{ml}$ of a 1.96 m solution in hexane) in THF (10 ml)] in the presence of HMPT ($1.54 \mathrm{~g}, 1.5 \mathrm{ml}, 9.44 \mathrm{mmol}$) with 1,4-dibromo-2-methyl-but-2-ene $(3.5 \mathrm{ml})$ as described for compound $\mathbf{1 6}$, followed by purification of the product over a silica gel column using ethyl acetate-hexane ($0: 1$ to $1: 20$) as eluent furnished the bromo compound 35 ($1.022 \mathrm{~g}, 73 \%$); $[a]_{\mathrm{D}}^{28}-273.7$ (c 2.62, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 1715,1650 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.46(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $6.5, \mathrm{H}-5), 5.83(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 1.6, H-6), $5.62(1 \mathrm{H}, \mathrm{t}$, $\left.J 7.7, \mathrm{H}-2^{\prime}\right), 4.93(1 \mathrm{H}, \mathrm{s})$ and $4.80(1 \mathrm{H}, \mathrm{s})\left[\mathrm{C}(8)=\mathrm{CH}_{2}\right], 4.0(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.0(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and $1.6, \mathrm{H}-4), 2.0-2.4(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7$ and $\left.-1^{\prime}\right), 1.89\left(3 \mathrm{H}, \mathrm{s}\right.$, olefinic $\left.\mathrm{CH}_{3}\right), 1.23\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(1)-\mathrm{CH}_{3}\right]$, $1.01\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(3)-\mathrm{CH}_{3}\right] ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 215.4(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 144.6 (s, C-8), 135.6 (d) and 132.6 (d) (C-5 and -6), 134.6 (s, $\left.\mathrm{C}-3^{\prime}\right), 126.3\left(\mathrm{~d}, \mathrm{C}-2^{\prime}\right), 108.6\left[\mathrm{t}, \mathrm{C}(8)=\mathrm{CH}_{2}\right], 52.0(\mathrm{~d}, \mathrm{C}-4), 50.2(\mathrm{~s})$ and $46.5(\mathrm{~s})(\mathrm{C}-1$ and -3$), 41.2(\mathrm{t}), 38.2(\mathrm{t})$ and $36.3(\mathrm{t})\left(\mathrm{C}-7,-1^{\prime}\right.$
and -4 '), $21.8(\mathrm{q}), 17.3(\mathrm{q})$ and $14.9(\mathrm{q})\left(3 \times \mathrm{CH}_{3}\right) ; m / z 229$ ($\mathrm{M}^{+}-\mathrm{Br}, 40 \%$), 106 (100), 91 (100); HRMS: m / z for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}$ $(\mathrm{M}-\mathrm{Br})$, Calc.: 229.1593. Found: 229.1588.

(1R,3S,6R,7S)-5-Isopropenyl-1,3-dimethyl-8-methylenetricyclo[4.3.1.0 ${ }^{3,7}$]decan-2-one 36 and ($1 R, 2 R, 5 S, 6 S, 8 S$)-10-isopropenyl-

 5,8-dimethyl-3-methylenetricyclo[4.4.0.0 ${ }^{2,8}$]decan-7-one 37A solution of $\mathrm{Bu}^{n}{ }_{3} \mathrm{SnH}(303 \mathrm{mg}, 0.28 \mathrm{ml}, 1.04 \mathrm{mmol})$ and AIBN $(20 \mathrm{mg})$ in 170 ml of benzene was prepared, 30 ml of which was added to a refluxing solution of the bromide $35(300 \mathrm{mg}, 0.97$ $\mathrm{mmol})$ in benzene (29 ml). The remaining solution of the $\mathrm{Bu}^{n}{ }_{3}{ }^{-}$ SnH and AIBN was added dropwise to the reaction mixture over a period of 2 h and refluxed for a further 8 h . The solvent was evaporated under reduced pressure. The reaction mixture was diluted with water $(5 \mathrm{ml})$ and extracted with diethyl ether ($3 \times 25 \mathrm{ml}$). The extract was washed with 1% aq. ammonia and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane $(0: 1$ to $1: 40)$ as eluent furnished an epimeric mixture of the isotwistanes 36 and minor amounts of the rearranged product $37(170 \mathrm{mg}, 76 \%)$ as an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3080$, $1720,1640,890 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.94(1 \mathrm{H}, \mathrm{q}, J 2.0)$ and $4.87(1 \mathrm{H}, \mathrm{q}, J 2.0)\left[\mathrm{C}(8)=\mathrm{CH}_{2}\right], 4.8(1 \mathrm{H}, \mathrm{m})$ and $4.71(1 \mathrm{H}, \mathrm{s})$ $\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}_{2}\right), 1.9-2.45(6 \mathrm{H}, \mathrm{m}), 1.74(3 \mathrm{H}, \mathrm{d}, J 1.0$, olefinic $\left.\mathrm{CH}_{3}\right), 1.65-1.8(1 \mathrm{H}, \mathrm{m}), 1.47(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and 5.3$), 1.2-1.25$ $(1 \mathrm{H}, \mathrm{m}), 1.10(3 \mathrm{H}, \mathrm{s})$ and $0.99(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right) ; m / z 230$ $\left(\mathrm{M}^{+}, 100 \%\right), 215(20), 187(40), 159$ (45), 145 (50), 133 (70), 119 (50), 107 (52), 105 (52), 91 (60); HRMS: m / z for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$, Calc.: 230.1671. Found: 230.1656.

Conversion of 36 and 37 into 23 and 29

Ozonolysis of a mixture of 36 and $37(272 \mathrm{mg}, 1.183 \mathrm{mmol})$ in 0.1 ml MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $-90^{\circ} \mathrm{C}$ and reductive work-up with dimethyl sulfide ($847 \mathrm{mg}, 1 \mathrm{ml}, 13.63 \mathrm{mmol}$) as described for the diketone 22 followed by purification over a silica gel column using ethyl acetate-hexane $(1: 5$ to $1: 2)$ as eluent furnished the triketone $(162 \mathrm{mg}, 59 \%)$ as an oil. $[a]_{\mathrm{D}}^{25}$ $+70.0\left(c 3.2, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1720,1700 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.94(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $5.0, \mathrm{H}-5), 2.7-2.9(2 \mathrm{H}, \mathrm{m}), 2.54$ (1 H, d, J5.0, H-7), $2.26(2 \mathrm{H}$, close AB q), $2.19(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 2.1-2.2(1 \mathrm{H}, \mathrm{m}), 1.86(1 \mathrm{H}$, dd, $J 13.4$ and 6.5 , $\left.\mathrm{H}-10_{\text {exo }}\right), 1.42\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{H}_{-4}\right.$ exo), $1.2(3 \mathrm{H}, \mathrm{s})$ and $1.13(3 \mathrm{H}$, s) $\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, peaks due to major isomer) $216.4(\mathrm{~s}, \mathrm{C}-2), 210.2(\mathrm{~s}, \mathrm{C}-8), 206.9\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 60.3$ $(\mathrm{d}, \mathrm{C}-7), 58.8(\mathrm{~d}, \mathrm{C}-5), 55.5(\mathrm{~s})$ and $44.5(\mathrm{~s})(\mathrm{C}-1$ and -3$), 46.9(\mathrm{t})$, $39.3(\mathrm{t}), 38.5(\mathrm{t}), 38.2(\mathrm{~d}, \mathrm{C}-6), 28.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$ and $18.7(2 \mathrm{C}$, q, $2 \times$ tert $-\mathrm{CH}_{3}$); m/z $234\left(\mathrm{M}^{+}, 56 \%\right), 219(15), 206$ (10), 191 (17), 163 (21), 148 (26), 135 (20), 123 (40), 43 (100); m / z for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$, Calc.: 234.1256. Found: 234.1265.
To a cold $\left(0^{\circ} \mathrm{C}\right)$, magnetically stirred suspension of methyltriphenylphosphonium iodide ($162 \mathrm{mg}, 0.4 \mathrm{mmol}$) in benzene $(4 \mathrm{ml})$ was added potassium tert-amyloxide $(0.384 \mathrm{mmol})$ [prepared from potassium $(15 \mathrm{mg}, 0.384 \mathrm{mmol})$ in 0.4 ml tert-amyl alcohol] in benzene $(0.6 \mathrm{ml})$ and the resultant yellow reaction mixture was stirred for 20 min at RT. To the methylenetriphenylphosphorane thus formed, was added a solution of the 5-acetylisotwistane-2,8-dione obtained in the previous experiment ($76 \mathrm{mg}, 0.325 \mathrm{mmol}$) in benzene (2 ml) and stirred at RT for 7 min . The reaction mixture was then quenched with water $(2 \mathrm{ml})$ and extracted with diethyl ether $(3 \times 5 \mathrm{ml})$. The ether extract was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane $(1: 20$ to $1: 5)$ as eluent furnished a mixture of the diketones $(40.7 \mathrm{mg}, 80 \%$ yield, based on the starting material consumed); $[\alpha]_{\mathrm{D}}^{28}+60.4\left(c 1.82, \mathrm{CHCl}_{3}\right)$; $v_{\max } / \mathrm{cm}^{-1} 3080,1720,1650,890 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.73$ (2 H , br s, $\mathrm{C}=\mathrm{CH}_{2}$), 2.6-2.65 ($2 \mathrm{H}, \mathrm{m}$), 2.0-2.4 ($5 \mathrm{H}, \mathrm{m}$), 1.73 $\left(3 \mathrm{H}\right.$, s, olefinic $\left.\mathrm{CH}_{3}\right), 1.53(1 \mathrm{H}$, dd, $J 13.0$ and 6.5$), 1.42(1 \mathrm{H}$, d, J 13.8), $1.19\left(3 \mathrm{H}, \mathrm{s}\right.$, tert $\left.-\mathrm{CH}_{3}\right)$ and $1.11\left(3 \mathrm{H}, \mathrm{s}\right.$, tert $\left.-\mathrm{CH}_{3}\right)$; $m / z 232\left(\mathrm{M}^{+}, 93 \%\right), 217$ (22), 189 (21), 161 (16), 121 (100),

105 (29); HRMS: m / z for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$, Calc.: 232.1463. Found: 232.1468.

Isomerisation of the diketones obtained above ($40 \mathrm{mg}, 0.172$ mmol) using rhodium chloride (5 mg) in refluxing ethanol (3 $\mathrm{ml})$ for 18 h followed by evaporation of the solvent under reduced pressure and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 10$ to $1: 5$) as eluent furnished a mixture of the enedione $\mathbf{2 3}$ and $\mathbf{2 9}$ ($35 \mathrm{mg}, 88 \%$), which were identified by spectral comparison (IR and ${ }^{1} \mathrm{H}$ NMR) with the mixture obtained earlier.

(+)-(1S,3S,5S,6R,7R)- and (1S,3S,5R,6R,7R)-1,3-Dimethyl-5isopropyltricyclo[4.3.1.0 $0^{3,7}$ decan-2-one (2-pupukeanone 5 and 5-epi-2-pupukeanone 6)

Platinum oxide (20 mg) was placed in a RB flask and activated with hydrogen (balloon). To the activated PtO_{2} was added a solution of the enone $24(40 \mathrm{mg}, 0.183 \mathrm{mmol})$ in ethanol $(4 \mathrm{ml})$. The reaction mixture was magnetically stirred for 24 h under a hydrogen atmosphere created by evacuative displacement of air. The catalyst was filtered off and the filtrate was added to a fresh sample of preactivated $\mathrm{PtO}_{2}(10 \mathrm{mg})$. The reaction mixture was further stirred for 24 h and the catalyst was filtered off. Evaporation of the solvent and purification of the residue over a silica gel column using ethyl acetate-hexane ($1: 40$ to $1: 25$) as eluent furnished a $2.5: 1$ epimeric mixture of 2-pupukeanone 5 and 5-epi-2-pupukeanone $6(25 \mathrm{mg}, 63 \%)$ as an oil, which were identified by comparison ${ }^{4 b}$ of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and mass spectra with those reported for the racemic compounds in the literature; $[a]_{\mathrm{D}}^{24}+26.0\left(c 1.54, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1710 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ peaks due to 2-pupukeanone 5: $2.32(1 \mathrm{H}$, dd, $J 8.7$ and 3.7, H-6), 1.54-1.85 (9 H, m), 1.38-1.45 (1 H, m, H-5), $1.31(1 \mathrm{H}$, dd, $J 13.9$ and 7.8$), 1.14(3 \mathrm{H}, \mathrm{s})$ and $0.92(3 \mathrm{H}, \mathrm{s})$ $\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.83(3 \mathrm{H}, \mathrm{d}, J 6.7)$ $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$. Peaks due to 5-epi-2-pupukeanone 6: $2.14(1 \mathrm{H}$, dd, $J 9.0$ and $5.2, \mathrm{H}-6), 1.96(1 \mathrm{H}, \mathrm{dd}, J 13.1$ and 9.1$), 1.12(3 \mathrm{H}$, s) and $0.91(3 \mathrm{H}, \mathrm{s})\left(2 \times\right.$ tert $\left.-\mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and 0.81 $(3 \mathrm{H}, \mathrm{d}, J 6.7)\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right] ; \delta_{\mathrm{C}}\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ peaks due to 2-pupukeanone 5: $222.7(\mathrm{C}=\mathrm{O}), 53.9,49.4,47.3,42.0,41.5$, 38.8, 33.9, 30.0, 29.3, 21.6 (2 C), 20.3, 19.0 and 17.6. Peaks due to 5-epi-2-pupukeanone 6: 54.5, 54.0, 44.2, 42.2, 42.0, 41.5, $40.4,33.0,32.7,21.2,20.3,20.1,19.0,16.9 ; m / z 220\left(\mathrm{M}^{+}, 65 \%\right)$, 189 (25), 177 (38), 159 (62), 149 (80), 135 (17), 121 (25), 107 (23), 93 (100).

Acknowledgements

We thank Professor Chang for providing the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the dione 25 and 2-pupukeanones, the Department of Science and Technology, New Delhi for the financial support, the University Grants Commission, New Delhi for the award of a research fellowship to T. J. R.; and SIF and IPC departments for recording the NMR spectra.

References

1 R. E. Johannes, Veliger, 1963, 5, 104.
2 (a) B. J. Burreson, P. J. Scheuer, J. Finer and J. Clardy, J. Am. Chem. Soc., 1975, 97, 4763; (b) M. R. Hagadone, B. J. Burreson, P. J. Scheuer, J. S. Finer and J. Clardy, Helv. Chim. Acta, 1979, 62, 2484.
3 For the synthesis of 9-isocyanopupukeanane and 9-pupukeanone, see: (a) E. J. Corey, M. Behforouz and M. Ishiguro, J. Am. Chem. Soc., 1979, 101, 1608; (b) H. Yamamoto and H. L. Sham, J. Am. Chem. Soc., 1979, 101, 1609; (c) G. A. Schiesher and J. D. White, J. Org. Chem., 1980, 45, 1864; (d) E. Piers and M. Winter, Justus Liebigs Ann. Chem., 1982, 973; (e) S. L. Heish, C. T. Chiu and N.-C. Chang, J. Org. Chem., 1989, 54, 3820. For the synthesis of chiral analogues of 9-pupukeanone, see: A. Srikrishna, P. Hemamalini and G. V. R. Sharma, J. Org. Chem., 1993, 58, 2509.

4 For the earlier synthesis of 2-isocyanopupukeanane and 2pupukeanones, see: (a) E. J. Corey and M. Ishiguro, Tetrahedron Lett., 1979, 2745; (b) G. Frater and J. Wenger, Helv. Chim. Acta., 1984, 67, 1702.

5 For the recent reports on the synthesis of 2-pupukeanone, see (a) N.-C. Chang and C.-K. Chang, J. Org. Chem., 1996, 61, 4967; (b) K. Kaliappan and G. S. R. Subba Rao, Tetrahedron Lett., 1997 , 38, 2185; K. Kaliappan and G. S. R. Subba Rao, J. Chem. Soc., Perkin Trans. 1, 1997, 3387; K. Kaliappan and G. S. R. Subba Rao, J. Chem. Soc., Perkin Trans. 1, 1997, 3393; (c) A. Srikrishna, D. Vijaykumar and G. V. R. Sharma, Tetrahedron Lett., 1997, 38, 2003.

6 For a preliminary communication, see: A. Srikrishna and T. J. Reddy, J. Chem. Soc., Perkin Trans. 1, 1997, 3293
7 (a) B. Giese, in Radicals in Organic Synthesis: Formation of CarbonCarbon Bonds, Pergamon, Oxford, 1986; (b) C. P. Jasperse, D. P. Curran and T. L. Fevig, Chem. Rev., 1991, 91, 1237; (c) B. Giese, B. Kopping, T. Gobel, J. Dickhaut, G. Thoma, K. J. Kulicke and F. Trach, Org. React., 1996, 48, 301; (d) D. P. Curran, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon, Oxford, 1991, vol. 4, pp. 715-831.
8 G. Stork and N. H. Baine, Tetrahedron Lett., 1985, 26, 5927.

9 A. Srikrishna, G. V. R. Sharma, S. Danieldoss and P. Hemamalini, J. Chem. Soc., Perkin Trans. 1, 1996, 1305.

10 J.-P. Gesson, J.-C. Jacquesy and B. Renoux, Tetrahedron, 1989, 45, 5853.

11 (a) J. Rodriguez and J.-P. Dulcere, Synthesis, 1993, 1177; (b) M. Okabe, M. Abe and M. Tada, J. Org. Chem., 1982, 47, 1775; (c) A. Srikrishna and P. Hemamalini, J. Org. Chem., 1990, 55, 4883.

12 A. Srikrishna, T. J. Reddy and P. P. Kumar, Synlett, 1997, 663.
13 For a similar observation, see: K. Kaliappan and G. S. R. Subba Rao, Chem. Commun., 1996, 2331.
14 G. Stork and M. E. Reynolds, J. Am. Chem. Soc., 1988, 110, 6911
15 A. Srikrishna, P. P. Kumar and T. J. Reddy, Tetrahedron Lett., 1998, 39, in the press.

Paper 8/02649A
Received 7th April 1998 Accepted 5th May 1998

[^0]: \dagger For part 30, see reference 15

